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The cbject of this theoretical investigetion is to obiain a set of
equations which will predict the behavior of & fluid as it changes phase
across & plane surface. Irreversible thermodynamics is employed to cbtain
the general rate equations and the resulis of kinetic theory are used to
determine the order of magnitude of several of the constants which asppear
in the rate eqmtions. The present analysis is limited to pbase change
problems viich are linear, that is the change in the driving potemtials
is smll as coupared to their value on either side of the liguid-vapor
nterface. '

The equations which result from the analysis described above are
applied to the condensatiom of a vapor on & plane liguid surface. From
this example, the significance of the theory can be realized.
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NOMENCLATURE

Description

area

‘specific heat at constant pressure

energy

specific energy

enthalpy

specific enthalpy

latent heat of condensation or evaporation
mass flux

energy flux

heat transferred from reservoir

heat transferred to reservoir
thermodynamic property defined by (36)
thermal conductivity

defined as (aJula(dt))dut-O

defined as (aJu/a(du'r))dWO

defined as (aJila(dut))dt-o

defined as (aJila(dt))dw_0
thermodynamic property defined by (17)
represents a non-equilibrium region
number of molds or mass units

pressure

total heat transfer

gas constant
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NOMENCLATURE (Continued)

Symbol Description
S entropy
T temperature
v vOolume
v specific volume
vfg difference in specific volume of vapor and liquid
Ve velocity in x-direction
x coordinate axes
o represents a geometric surface
8 constant defined by (55)
A thermodynamic property defined by (16)
¥ chemical potential
b mass density
o evaporation coefficient
T inverse temperature (vz1/T)
Subscripts
i property at the interface
1 property of the liquid
M property of the fluid in region M
m momentum effect
R property of the reservoir
] saturation condition
v property of the vapor
W property at the wall
I property of fluid in region I
II property of fluid in region II

® property of fluid at infinity



I. INTRODUCTION

When a liquid and vapor coexist in eguilibrium, the second law
requires contimity of temperature and chemical potential across the
liquid-vapor interface. However, if a finite rate of change of phase
occurs, 8 discontimuity in tesperature and chemical potential may exist
at this interface. The magnitude of these discontiruities depend upon
the rate at which the changes take place and the thermodynamic state of
the system. Recestly Sukbatwme(l) presemted experimental evidence that
the discontimuity in tempersture and chewical potenti&l across the iiquid-
vepor interface had a significant effect on the heat transfer during film
condensation of a liquid metal vapor. The effect of the discontinuities
may also be importent in other phase change processes and therefore it is
important to cbtain a theory which will predict the magnitude of the dis-
contimiities and also to determine the effeet they have on whatever process
is ocowrTing.

II. THE THERDODYNAMICS OF TRREVERSIBLE PROCESSES

The theory presented here is based on the principles of irreversible
thermodynaxics. Presently the theory of irreversible thermodynamics is
applicable only to processes which are linear., Consequently the following
analysis will be limited to these cases. For the present problem, a linear
case is ane in which the changes in temperature and chemicsl potential across
the interface sare smill compmred to the temperature and the chamical poten-
tial on either side of the interface.

The analysis will proceed according to the formalism of the following
three steps. The explanations given for each step are essentially speciali-
zations of the more general explanations presented by Hatsopoulos and Xeenan
in reference (2).

1. The entropy production equation.

This eguation expresses the rate of increasse of entropy due to the
irreversible phase change process. To express this in terms of other
therzodynemic properties quasistatic regions are placed on each side of the
liquid-vapor interface as shown in Figure 1. Region M represents the steady
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but non-equilibrium region vhich exists between the homogeneous liquid

snd vapor. The surfacese!' andd" are placed such that the flow acress

them is bulk flow. Regions I and IT are maintained at a constant inverse
temperature 7 and 7 +47 by the reservoirs showm, and the pressure is

medntained constant throughout by the pistoms.

The sole puxpose of the entropy production eguation is to determine
the appropriate forces and fluxes to be used in the phenomenciogical
equations. It will be shown later that for the present prcblem the forces
are J7 and 447 , and the fluxes are the rate at vhich mass (J,) and
mrg(sn)mtmfure&acman.

2. The phencmenclogical equations.

For the present problem these comsist of two equations vhich express
each flux a8 & function of both forces. The phenocmenological equation for
the mss flax (J,) is cbtained as follows.

It is clear that (J )mbeemessedas

T =J(7n7,d7,d447),

(1)

The ﬁmctima'imybe expandad into e Maclaurin power series as follows:
l(?/”d?a’ﬂf) (74,0 )
""/’[(QZ;)) 7 "’(;(, )) J’”’] (2)

v [ )(") [a(}) )(“/’7)]

When /7 and J47 are zero, the system I-M-II is in an equilibrium state
and J, must vanish. The first term of the right-hand mewber of (2) must
therefore be zero. If we assume the derivitives which appear in (2) to
be fininte as /7 and /#7 go to zero, then it follows that

T = <9(4,7)) J7 = (3(/”)) 447 (3)
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&8 /7 and J47 become small. Py similar reesoning one can show that

-l Gl

Hi=0

For convenience BEquations (3) and (%) are written in the following form;

~n
A

Ji: =Liud? — Lii d47, (6)

where the definitions of the L's &re obvicus. The four L's are therwo-
dynamic properties sinee the partial derivatives vhich define them are
evaluated as the system approaches its equilibrium state. Equations (5)
and (6) are mown 83 the phenomenclogical equatieus.

The solution to the phase-change problem would be conplete if the
four L's in (5) and (6) were known. It will be shown in Seetion III that
three of the L's can be expressed in terms of measurable quantities. Tbe
remaining cne is obtained from the Onsager reciprocal relatiom.

3. The Owsscer reciprocal relstion.
For the present problem this relatica becomes

Lm‘ = l—iu m
To write the entropy production equation for the system shown in
mml,mmmmmmxmn,mwm
effects, will be neglected. In Secticn ¥ it will be shown that this assump-
tion is included in the asgumption that the process is linear.
The total entropy production can be written as

- ¢ L& - . 4 (8)
- SI + Sz +5M+SR2 Sz .
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From the Gibbs cquation it ean be shom that
~§1=7é2 +7P&I "/7/?1 )
Sz =(7147) g + (74d7) Pl ~ (47+d47) Iz,

}M [ ]

= (0 (since the state in X is steady)
$a= 7% |
ol ey = (';*J7)\7}z .
Swubstitution of these into Equation (8) yields
= Extby -l +Tm * PV + Ply) a7 (i i)
+d7(Ex+ Pl + g) - 247( 1) -

(8)

Equation (9) can be simplified by applying the first law to system

INII. B gives
Ertby =T fu~ Pl ~Plir
Therefore Equation (9) beccmes
S=T,d7~T; du7
- |
52 Eg +Pl +J/r¢,=-(é,+Pz},—%I)
and

J;'E ﬁrz'ﬂl .

(10}

(1) -

(12)

(13) -
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From Equation {11) 1% follows that the appropriate forces are /7 and
147,mwmmmmﬂmare{amd%. Therefors the
wme@utimwm

J-qzl.mg d7 - !.llt'///7 (1h)
and
Ji=Lliwd?—Li; A47 (15)
ffoan eliminating /47 from (14) snd {15) and introducing
- Lus
AZ T (16)
and
- Lui Liu
L= [Lwn - “‘ZT'"] ()
the following result is obtained
\Tu:/{J;' tLpd? (18)
Jo - (._l:.f.'i‘ d7 -
Lii L ) / d47 . (19)
minsthewreciproealm]aﬁmit follows that
_ Lew
A T Lé (20)
and therefeore
A
To=Ad) - LA ()

To express Equation (21) in terms of more fomilisr terms, it is necessery
to find an expression for 47 . At equilibrium (47)sy i1l egual
(#7)smg > therefore

su7 = (A7)~ (), = [ )~ 7),, ] |49, )] (@



vhere
(#47)r  is the actwal 47 1in rvegion I,
(7). is the sctual ¢7 in regiom II,
(a7)cs is the #7 of region I, if it were at an

inverse tespersture 77 and the saturation pressure

Ps corresponding to 7 ,

(A7)zs is the .47 of region II, if it were at an

inverse teaperature 7 and pressure /s .
However, the change in oy foraspuweshase is [ A7+ 7AP
Therefore

(w7) = (A7), = V5 TP (23)
and

(A7) = (D)5 = g d7+ V2 7P (&)
vhere

dPz P-A. =)

It should be noted that dP is not an actual pressure drop vhich is
reelized in the system shown in Figare 1, but simply is the difference
between the actual pressure (which is the same in I snd IT) and the sat-
mﬁmm?smpm&mmmeimtmm 7 (actusl
7 1in region I). By substituting (23) sud (24) into (22) the following
is cbtained:

24T = by d7 + 7 (% -Y)4P . ()

Rewriting (18) for reference and substituting (26) into (21) gives

Wz Ak +Lixd7

(21)

F (= )d7- 71 -3) 4P

(28)
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For Bquatioms (27) and (28) to be useful, A must be expressed in
terms of wore cesily measured properties. Froam Bouation (27), cme can
write

(gil o A (29)

Remembering the definition of J, mmm(m)mmfwm
follwimswpunbemlmed
HI Ez*mé €l +PVz Nz

Hy = EI*FVI (30)
= €zhy + PV ix
Z-h ¢ (31)
Sizﬂ.hﬂy
32
= /71.‘7"..
Therefore Equation (12) can be writien as
Ju=hr i +Vgz (33)
e = bz J; ‘*\77.0:
(3n)
and it follows that

How the object istoenninatea'ql frem Bguation (33) ara‘qn from
Equation (34). Bowever, to do this another relationship between JQI
and an other than (35) is needed. For irreversible processes which

do not involve a large finite change in any of the intensive thermodynzeric
properties, this relationship is cbtained by definming a heat of transport,
bowever, for the liquid-vepor system there is a large change in some of
the intensive thermodynamic properties such as specific volume and specific

energy, aud therefore, the heat of transport in the usual gense is not a
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useful definitiom. It will be shown that the following definitiom of K
will yield the desired information.

= i’sz_)
- (ng 47=0 2
It is important to note that K is defined only for an isothermal process.
By combining Equations (33), (35) s»d (36) one cbtains

g |
G = b (e -b) 7 (30

Tuis shows that X is s thermodynamic property, since ('v'u/'i{}!ho
is & thermodynemic property.{See Equations (29) snd (20).

With the use of Equatiens (37) and (29), Equations (27) end (28)
become

Ju ’"'m{/ [Khl the JJo tLle d7
ZI"" =il - he]d7 - (% - % )dP. (39

Hote that in (38) and (39) there are three unknown thermodynamic prep-
eriies K, I'iiWI’K‘ The following three equations, which are coblained
from (38) and (39), indicate the experimsnts which could be perfomed to
measure these constants.

(38)

47 :(._@.._ hr —be
a7 ¥ <o @+/ 7(@1—__2/_5.) (ko)

(% Ypo& L 7(% -vz)dP (1)

(J;f}‘.&._:o: Lad7 (k2)
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Iv. mmmxmnﬁmmm

roobmmmofmmaxmnﬁmmu of &

kinetic theory amlysis performed by Schrage (3) will be vsed. These
z_z) SR
(47 oo 27 (43)
s /
- 7_\*
).~ wr) 4P (k)
with (43), (44}, (#0), and (41) cme cbsains
Kk - P ks
and
o
L’l. - (217.7§)'A v‘;j (’;6)
Substitution of (hs) and (46) into (30) and (39) yields
V"i’7 r d7 _a_lﬁ-]
(¥7)
and

T 7 o [k)?z”bz];] tlied7 .

Y. JUSTIFICATIOR FOR NEGLECTING THE MOMEFTUM PRESSURE DROP
If the momentum effect is included, Equation (26) becomes

dU7 = by d7+7(V -6)dP +7% dF, (b9)

whm@‘ummmmmﬁffmeemsn. Froma the
momentum and comtimuity equations it ls easy to show that

By == (% -v5)

Threfore Equation (h9) becomes

47 = by d7+ 7(% - %) (dP-v5 T7%). (s2)

(18)

(50)
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Toobwnthemdmtuasof g I Equation (¥7) 13 used

A r o
d47 =hlaf7+7{1&—1§}_£'f m"’ z 77 j/o) ] (52)

Bation (52) is substituted into Equation (21) where A 1s obtained
from (3B) and (k5). After several algsbraic steps this yields

J47 _ 4

Jc' [
Ci-w)PH,; ¢ 7 P
v P7[_t 7%, 74P |, JdP) ]

“awk L#(7/ "5 t(p/d 3

4

vhere the monentum effect 18 contained in the last three terms in

Bquation (53). The use of the Onsager relation presupposed that therms
of the order of (47/P)° smd (d7/7)  were negligible compared to
dP/ P and J7/7 , therefere, the momentum effect will also
be negligible since they are of the erder of (/P/p)> eamd (/7 /7)*

VI. APPLICATION OF THE IRREVERSIBLE FLOW EQUATIONS TO CONDENSATION AT
A YLAY BURFACE

Figare 2 shows a vapor condensing at a plane liquid surfacs. The
purpose of this analysis is to determine the temperature of the wapor
a%t the liquid-vepor interface (T ) Since the expression for J, was
not known, previouns investimars have ascumed the temperature of the
vapor Lo be & comstant, however, it will be shown that this sssumption
=8y be in error.

If the vapor is asgsumed to be a perfect gas and if viscous heating
is neglected, the energy eguation becomes

3T - _5.2Z

X T TPox= (54
vhere
K /05,6%) (55)
Hote that 0 1s a constant positive mumber, since J, ¢, 1is e positive

corstant from the contimity equation. Integration of Equa.tiem (54) with
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the following boundary conditions

T(®)=T» (56)
T(0> = 74,-',‘
(s7)
yields

T-Te0 = {(To-Tw)C -ﬁ; (s8)

and it follows that

4r) - L i

(‘/z o ‘d (7;9 TU‘C) . (59)

To determine (cn'/ax)x -0 1t 18 necessary to consider the heat trans-
for at the liquid-vapor interface. Since there is bulk flow in the
vapor near the interface one can write

| ‘7;( = }7;"); }"' (%)v (60)

vhere (Q/A)v is the heat transferred in the positive X direction.
Equating this expression for J, to the ane given by Equation (38) it
follows that

-(7?)\, - (k;:;——)}’f;ﬁ Uyt Lk d]. 1)

Substituting for K/K+1 from Equation (45) yields
&)y . .2
(Z), "~z %A%t ledy.

(62)
Coubining (_-62) with (59) it follows that
‘ PY; Glx
Ty = o) = 1L + £2X% J7,

(7o: %) Ty (63)

Kote that if Lp = O and Veg = % Equation (63) becomes

Tv: = Ter - L E .
T Z ¢ (64)

This shows that the interface temperature may be quite different from T.
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YII. CONCIUSIONS AND RECOMMENDATIONS

Fram the above results it is concluded that the problem of a phase
change can be successfully analyzed from the point of view of irrever-
sible thermodynamics.

An expression for the'eneryﬂnx(.?u) across the liquid vapor
intexrface wvas obtained. No such expressicn could be found in the liter-
ature surveyed. This expression is important becanse it permits ome to
determine the temperature at the interface.

The present analysis is limited to steady interphase transfer
acrossap]anésnrface,hwm, it is felt that the analysis may be
extended to include the unsteady interphase transfer across a curved
surface.

The linear approximation mede in this analysis greatly restricts
its applicability. For this reason the extremely complex non-linear
problem should be investigated.
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FIGURE 2. THE COBDERSATION OF A VAPOR AT A PLABE SURFACE




